Pesquisar este blog

Arquivo do Blog

domingo, 22 de fevereiro de 2015

Movimento Uniformemente Variado



Movimento Uniformemente Variado

Também conhecido como movimento acelerado, consiste em um movimento onde há variação de velocidade, ou seja, o móvel sofre aceleração à medida que o tempo passa.
Mas se essa variação de velocidade for sempre igual em intervalos de tempo iguais, então dizemos que este é um Movimento Uniformemente Variado (também chamado de Movimento Uniformemente Acelerado), ou seja, que tem aceleração constante e diferente de zero.
O conceito físico de aceleração, difere um pouco do conceito que se tem no cotidiano. Na física, acelerar significa basicamente mudar de velocidade, tanto tornando-a maior, como também menor. Já no cotidiano, quando pensamos em acelerar algo, estamos nos referindo a um aumento na velocidade.
O conceito formal de aceleração é: a taxa de variação de velocidade numa unidade de tempo, então como unidade teremos:

Aceleração
 
Assim como para a velocidade, podemos definir uma aceleração média se considerarmos a variação de velocidade em um intervalo de tempo , e esta média será dada pela razão:

Velocidade em função do tempo 

No entanto, quando este intervalo de tempo for infinitamente pequeno, ou seja, , tem-se a aceleração instantânea do móvel.
Isolando-se o :
Mas sabemos que:
Então:

Entretanto, se considerarmos , teremos a função horária da velocidade do Movimento Uniformemente Variado, que descreve a velocidade em função do tempo [v=f(t)]:

Posição em função do tempo 

A melhor forma de demonstrar esta função é através do diagrama velocidade versus tempo (v x t) no movimento uniformemente variado.
O deslocamento será dado pela área sob a reta da velocidade, ou seja, a área do trapézio.
Onde sabemos que:
logo:
ou
Interpretando esta função, podemos dizer que seu gráfico será uma parábola, pois é resultado de uma função do segundo grau.


Equação de Torricelli 

Até agora, conhecemos duas equações do movimento uniformemente variado, que nos permitem associar velocidade ou deslocamento com o tempo gasto. Torna-se prático encontrar uma função na qual seja possível conhecer a velocidade de um móvel sem que o tempo seja conhecido.
Para isso, usaremos as duas funções horárias que já conhecemos:
  (1)
  (2)
Isolando-se t em (1):
 
Substituindo t em (2) teremos:
 
 
 
Reduzindo-se a um denominador comum:
 
 
 
 

Exemplo:
(UFPE) Uma bala que se move a uma velocidade escalar de 200m/s, ao penetrar em um bloco de madeira fixo sobre um muro, é desacelerada até parar. Qual o tempo que a bala levou em movimento dentro do bloco, se a distância total percorrida em seu interior foi igual a 10cm?
Apesar de o problema pedir o tempo que a bala levou, para qualquer uma das funções horárias, precisamos ter a aceleração, para calculá-la usa-se a Equação de Torricelli.
 
 
Observe que as unidades foram passadas para o SI (10cm=0,1m)
 
A partir daí, é possível calcular o tempo gasto:
 
 


.

Nenhum comentário:

Postar um comentário